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Abstract
Saddle–node bifurcations have been described in a multitude of nonlinear
dynamical systems modeling physical, chemical, as well as biological systems.
Typically, this type of bifurcation involves the transition of a given set of fixed
points from the real to the complex phase space. After the bifurcation, a saddle
remnant can continue influencing the flows and generically, for non-degenerate
saddle–node bifurcations, the time the flows spend in the bottleneck region of
the ghost follows the inverse square root scaling law. Here we analytically
derive this scaling law for a general one-dimensional, analytical, autonomous
dynamical system undergoing a not necessarily non-degenerate saddle–node
bifurcation, in terms of the degree of degeneracy by using complex variable
techniques. We then compare the analytic calculations with a one-dimensional
equation modeling the dynamics of an autocatalytic replicator. The numerical
results are in agreement with the analytical solution.

PACS numbers: 05.45.−a, 02.30.Oz, 82.39.−k

1. Introduction

The connection between mathematics and other scientific disciplines has become extremely
relevant in recent decades since nonlinear dynamical systems theory has been applied
to theoretically describe and study the dynamics governing several physical, chemical or
biological systems. From the foundational studies of Henri Poincaré on the qualitative or
geometrical theory of nonlinear systems of differential equations at the end of the nineteenth
century, the development of a huge quantity of scientific literature based on these mathematical
approaches largely justifies their use as theoretical powerful tools to tackle really complex
phenomena arising in both natural and artificial systems. For instance, several works based
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on nonlinear dynamical systems theory have revealed interesting results in the context of both
ecological [1–4] and molecular dynamics [5–7].

Several dynamical phenomena can occur near critical points in some nonlinear dynamical
systems [8–10]. For instance, delaying processes arising in the transition between two
qualitatively different dynamics as the bifurcation parameter crosses the bifurcation point.
Some examples of delayed transitions can be found in the vicinity of first- or second-order
phase transitions, for example, the so-called critical slowing down [11–14], typically arising
near pitchfork bifurcations [9]. Delaying phenomena can also arise near a critical point by
means of the so-called stability loss delay [15], reported in laser physics, biophysics and
chemical kinetics (see [16] for detailed references). Other dynamical properties such as
intermittency phenomena [17–19] have been reported in the vicinity of bifurcation points. For
this case, chaos is achieved via intermittency in the well-known Manneville–Pomeau route to
chaos [8].

The dynamical behavior studied in this work appears near a saddle–node bifurcation, and
is given by the so-called bottleneck or ghost [9]. Saddle–node ghosts involve a time delay
required to pass through the bottleneck region where a saddle remnant continues influencing
the flows although the two fixed points involved in the bifurcation have coalesced [9]. For non-
degenerate bifurcations, this time delay, τ , typically follows the inverse square root scaling
law given by

τ ∝ 1/
√

µ − µc,

being µ the bifurcation parameter and µc the parameter value at which the bifurcation takes
place. However, one of the points we address in this paper is that degenerate bifurcations give
rise to different scaling laws.

Bottlenecking phenomena and its associated inverse square root scaling law have been
elegantly shown in an experiment with an electronic circuit modeling Duffing’s equation [20].
This scaling law has also been described in intermittency phenomena [17–19], in a model of
charge density waves [21] as well as in the theoretical framework of earlier prebiotic evolution
for hypercycles [22–24]. For this system, the saddle–node bifurcation, which involves the
jump of the coexistence fixed point of the hypercycle and the saddle to the complex phase
space, separates the survival of these catalytic replicators from an asymptotic extinction
[22–26].

Many of the mentioned models are given by polynomial or analytic differential equations.
Since it is theoretically possible to look at the complex phase space (i.e., considering x ∈ C),
we may think of taking advantage of the information of the features of the dynamics in C. In
particular for the (non-degenerate) saddle–node bifurcation, two equilibrium point coalesce
and apparently disappear but actually they leave the real phase space and move to the complex
phase space. Consider the model for the saddle–node bifurcation

x ′ = −ε − x2.

For ε �= 0 it has two equilibrium points, x = ±√−ε, which are real for ε < 0 but are complex
for ε > 0. It turns out that when ε > 0 is small the complex equilibrium points are close to
the origin and hence at this point the vector field (and hence the velocity of x) is small, which
means that x has to spend much time to pass through the bifurcation point. This is the main
reason for the so-called bottleneck or ghost phenomena. The scaling law measures the time
of passage through x = 0 as a function of the difference of the parameter ε to its bifurcation
value εc = 0.

In this work we derive, in section 2, the scaling law for general saddle–node,
one-dimensional bifurcations for an analytic differential equation using complex variable
techniques and explicitly compute the leading coefficient of the corresponding asymptotic
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expression. By general saddle–node bifurcation, we mean a bifurcation for which a saddle
and a node coalesce in a possible degenerate way as it happens in the model x ′ = −ε − x2n,
being the case of our study the general model given by

x ′ = aε + bx2n + higher order terms (1)

(see the precise conditions in section 2). Then, in section 3 we apply the calculations developed
in section 2 to characterize the time spent in the ghost for an autocatalytic replicator. Such a
passage time is then compared with numerical analysis.

2. Scaling law in the saddle–node bifurcation

We consider a one-dimensional differential equation

x ′ = f (x, ε),

having a saddle–node bifurcation. To simplify the notation, we first assume that it takes place
at x = 0 when ε = 0. We also assume that f is analytic with respect to x in the neighborhood
of x = 0. Sufficient conditions for such a bifurcation are

f (0, 0) = 0, Dεf (0, 0) �= 0, (2)

and

Dj
xf (0, 0) = 0, 1 � j � 2n − 1, D2n

x f (0, 0) �= 0. (3)

Let a = Dεf (0, 0) and b = D2n
x f (0, 0)/(2n)!. For the sake of concreteness we assume that a

and b are negative, the other cases being easily obtained by changing ε �→ −ε and/or x �→ −x

(as previously mentioned, the model is equation x ′ = aε + bx2n). The equilibrium points are
the solutions of f (x, ε) = 0. Condition (2) allows us to apply the implicit function theorem
and obtain that locally the zeros of f close to (0, 0) are the points of the graph of an analytic
function ε = g(x) such that g(0) = 0. Differentiating implicitly 2n times f (x, g(x)) = 0 we
obtain inductively that Djg(0) = 0, 1 � j � 2n − 1, and

D2ng(0) = −D2n
x f (0, 0)

Dεf (0, 0)
.

This means that

ε = g(x) = 1

(2n)!
D2ng(0)x2n + · · · = −b

a
x2n + O(x2n−1).

In order to have the zeros in terms of ε, we just have to invert the previous expression. Except
for ε = 0, we get 2n complex solutions

xj (ε) =
(

aε

b

)1/(2n)

eiπ(1+2j)/(2n) + O(ε1/n), ε > 0,

(4)

xj (ε) =
(

− aε

b

)1/(2n)

eiπj/n + O(ε1/n), ε < 0,

with 0 � j � 2n − 1, where i = √−1. Since a/b > 0, for ε < 0 we have two real
equilibrium points, x±(ε) = ±(−aε/b)1/(2n) + O(ε1/n), which correspond to j = 0, n, and
no real equilibrium points for ε > 0.

To decide the stability of x±(ε) when ε < 0, we evaluate the x-derivative of f at them.
We write

f (x, ε) = aε +
∑

2�k+l�2n

ck,lx
kεl + · · ·.

3



J. Phys. A: Math. Theor. 41 (2008) 015102 E Fontich and J Sardanyés

Condition (3) implies ck,0 = 0 for 1 � k � 2n − 1 and c2n,0 = b. Then

Dxf (x±(ε), ε) = ±2nb(−aε/b)(2n−1)/(2n) + O(ε) (5)

and therefore if ε < 0 is small, x+ is stable and x− is unstable (recall that b < 0).
Our goal is to estimate the time needed to go from x = δ to x = −δ for some δ > 0 in

terms of ε > 0 small. Since the equation is autonomous, the time is given by the integral

τε =
∫ −δ

δ

dx

f (x, ε)
. (6)

We choose δ > 0 and ε0 > 0 small enough such that f (x, ε) �= 0 for (x, ε) ∈
[−δ, δ] × (0, ε0]. Since f is analytic we can extend it analytically to an open set U of C

containing {z ∈ C| − δ1 � Re z � δ1, 0 � Im z � ν} for some δ1 and ν independent of ε.
From (4) we have that for ε > 0 small, f (x, ε) has 2n complex zeros close to

x∗
j (ε) =

(
aε

b

)1/(2n)

eiπ(1+2j)/(2n), 0 � j � 2n − 1.

Among these x0 and xn−1 are the continuation of the real equilibrium x± points after the
bifurcation which have become complex. They are simple zeros since a completely analogous
computation as in (5) gives |Dxf (xj (ε), ε)| = 2n|b|(aε/b)(2n−1)/(2n) +O(ε) �= 0, if ε is small
and are the unique zeros of f in U. Hence these zeros are simple poles of 1/f .

The strategy to compute the integral in (6) consists of considering x as a complex variable
and to apply the Residue theorem with a closed complex path of integration γ , independent of
ε, whose intersection with the real axis coincides with the interval [−δ1, δ1] (see figure 1b).
By the Residue theorem, we have

Iε :=
∫

γ

dx

f (x, ε)
= 2π i

∑
0�j�n−1

Res

(
1

f
, xj (ε)

)

because the xj with 0 � j � n − 1 are the poles in the upper-half plane inside the path γ

since they are ε(1)/(2n)-close to x∗
j (ε), respectively [22].

The calculation of the residues gives

Res

(
1

f
, xj (ε)

)
= lim

x→xj (ε)
(x − xj (ε))

1

f (x, ε)

= 1

Dxf (xj (ε), ε)
= 1

2nbx2n−1
j + O(ε)

.

The sum of the residues can be estimated since its dominant part is a geometric progression

1

2nb

(
b

aε

) 2n−1
2n

n−1∑
j=0

e−iπ(1+2j) 2n−1
2n + O

(
ε− 2n−2

2n

)

= −1

2na

(
a

b

) 1
2n

(
1

ε

) 2n−1
2n

n−1∑
j=0

eiπ 1+2j

2n + O
(
ε− 2n−2

2n

)

and the previous sum is calculated as

eiπ/(2n)

n−1∑
j=0

eiπj/n = eiπ/(2n) eiπ − 1

eiπ/n − 1
= −2

2i sin(π/(2n))
.

Hence we obtain

Iε = A

εp
+ O

(
1

εp−1/(2n)

)
,
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where

p = 2n − 1

2n
and A = 1

na

(
a

b

) 1
2n π

sin π
2n

.

Next we relate Iε with τε . We decompose γ as the union of the paths γ1 = [−δ1, δ1], γ2, γ3

and γ4, as shown in figure 1(b). Let

I j
ε :=

∫
γj

dx

f (x, ε)
.

Obviously, Iε = ∑4
j=1 I

j
ε . We will see that I 2

ε , I 3
ε and I 4

ε are bounded with respect to
ε and therefore the O(ε−(2n−1)/(2n)) contribution to Iε comes from I 1

ε . We parameterize
γ2(t) = δ1 + iνt with 0 � t � 1, hence

I 2
ε =

∫ 1

0

iν dt

f (γ2(t), ε)
.

Since f (γ2(t), ε) = f (γ2(t), 0) + O(ε) and f (γ2(t), 0) �= 0 for t ∈ [0, 1], we deduce

1

f (γ2(t), ε)
= 1

f (γ2(t), 0)
+ O(ε)

uniformly (by the compactness of [0, 1]), and therefore

I 2
ε = C2 + O(ε). (7)

Analogously, we parameterize γ4(t) = −δ1 + iν(1 − t), with 0 � t � 1, and in the same way
we obtain

I 4
ε = C4 + O(ε). (8)

We parameterize γ3(t) = −t +iν with −δ1 � t � δ1. Again f (γ3(t), ε) = f (γ3(t), 0)+O(ε),
with f (γ3(t), 0) �= 0 for t ∈ [−δ1, δ1], hence 1/f (γ3(t), 0) + O(ε) uniformly and

I 3
ε = C3 + O(ε). (9)

Putting everything together and taking into account (7)–(9), we have∫ −δ1

δ1

dx

f (x, ε)
= A

εp
+ O

(
1

εp−1/(2n)

)
. (10)

Given some δ > δ1, such that |f (x, ε)| > α > 0 on [−δ,−δ1] ∪ [δ, δ1], then both∫ δ1

δ

dx

f (x, ε)
and

∫ −δ

−δ1

dx

f (x, ε)

are bounded by (δ − δ1)/α (independent of ε) and, therefore, the asymptotic expression of the
time of passage τε is given by the same expression (10). We remark that the dominant term in
(10) is independent of δ.

If the bifurcation occurs at x = xc for the value of the parameter ε = εc, we only have to
make the translations x �→ x − xc and ε �→ ε − εc. Conditions (2) and (3) for the bifurcation
now read f (xc, εc) = 0, a = Dεf (xc, εc) �= 0 and D

j
xf (xc, εc) = 0, 1 � j � 2n − 1, b =

D2n
x f (xc, εc)/(2n)! �= 0, and the time of passage is (assuming a, b < 0)

τε =
∫ xc−δ

xc+δ

dx

f (x, ε)
= A

(ε − εc)p
+ O

(
1

(ε − εc)p−1/(2n)

)
,

for ε > εc.
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In the particular non-degenerate case, n = 1, we have

τε = π√
ab(ε − εc)

+ C + O(
√

ε − εc), ε > εc, (11)

where C is a constant dependent on δ but independent of ε.

3. Autocatalytic replicator model

The dynamics of an autocatalytic replicator can be modeled with a one-dimensional ordinary
differential equation, where the state variable, x(t), denotes the relative concentration of a
replicator which catalyzes its own chemical formation. Actually, an autocatalytic process
might also describe the qualitative dynamics of a single population of organisms with
intraspecific cooperation. If we assume a well-mixed population of replicators with nonlinear,
i.e., catalytic, growth and a logistic restriction function in reproduction, the population
dynamics for this system can be modeled according to

dx

dt
= kx2

(
1 − x

c0

)
− εx, (12)

where x ∈ R
+ ∪ {0} and c0 denotes the carrying capacity of the system. Here k and ε are,

respectively, the intrinsic growth or self-replication rate and the density-independent decay
or hydrolysis rate of the replicator. Expressing equation (12) in the form of equation (1) we
obtain, by considering ξ = x − xc and η = ε − εc,

dξ

dt
= −c0

2
η − k

2
ξ 2 −

(
ηξ +

k

c0
ξ 3

)
.

The system described by equation (12) undergoes a saddle–node bifurcation at xc = c0/2
for εc = c0k/4. The qualitative behavior as well as the transition towards extinction
for an autocatalytic replicator species has been previously characterized [24]. Moreover,
several studies with the well-known hypercycle model have shown that the transition between
coexistence and extinction in catalytically coupled replicator species is governed by the saddle–
node bifurcation [23–26]. The asymptotic extinction for these replicator systems begins once
the critical decay rate εc (i.e., bifurcation point) is achieved and a saddle–node bifurcation takes
place (see figure 1(a) for details). From a purely mathematical point of view, this bifurcation
involves the transition from positive, real fixed points (i.e., the saddle and coexistence invariant)
to complex fixed points.

The previous calculations can be applied to equation (12). For this particular case, we
have Dεf (xc, εc) = −c0/2 and D2

xf (xc, εc) = −k. Hence, using equation (11), the time
spent to pass through the bottleneck region found in the complex phase space is given by

τε = π√
c0k(ε − εc)

+ C + O(
√

ε − εc), ε > εc, (13)

where C may depend on δ, k, c0 but is independent of ε.
We now compare the time delay given by equation (13) with the extinction time for

the autocatalytic replicator after the bifurcation, solving equation (12) numerically with the
fourth-order Runge–Kutta method (using a constant time step δt = 0.1). Figure 2 shows a
very good match between both time delays, especially when the distance to the bifurcation
point is small, indicating that equation (11) provides a good estimate for the transient dynamics
in one-dimensional ghost-induced delayed transitions occurring in the complex phase space.
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Figure 1. (a) Bifurcation diagram for equation (12) using ε as control parameter with k = 1
and c0 = 1. Vertical lines are one-dimensional phase space (stable and unstable equilibria are,
respectively, indicated with black and white circles, both placed on the solid and on the dashed
branches of the diagram). Arrows indicate the direction of the flow on the line. (b) Schematic
diagram of the complex path of integration γ for n = 3.
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Figure 2. Time delay, τε , near bifurcation threshold in a doubly logarithmic scale. Dashed thick
line displays the delay predicted by equation (13), and the solid line shows the delay numerically
obtained from equation (12) with k = 1, c0 = 1 and x(0) = 0.5. We assume replicator’s extinction
with [x] < 10−8.
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4. Conclusion

We have analytically derived the scaling law governing the trajectories time passage through
the ghost for a general one-dimensional, analytical, autonomous dynamical system undergoing
a not necessarily non-degenerate saddle–node bifurcation where a stable and an unstable fixed
point collide in phase space and jump into the complex phase space, in terms of the degree of
degeneracy. The time delay near the bifurcation threshold obtained analytically perfectly fits
with numerical solutions for the autocatalytic replicator equation.
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bifurcation Am. J. Phys. 72 799–809
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